Drinking Water Sources

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. In 2013 the Utilities Division distributed approximately 8,645 acre-feet (or ~2.8 billion gallons) of drinking quality water at an average of 7.72 million gallons per day. Total water production for 2013 increased approximately 2% over 2012. The City of Flagstaff's water supply is from surface water (i.e., from Upper Lake Mary and the Inner Basin) and groundwater (i.e., from Woody Mountain, Lake Mary and the Local well fields). Groundwater wells tap the Coconino Aquifer.

Drinking Water Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The presence of contaminants does not necessarily indicate that water poses a health risk. Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants can be naturally occurring or be the result of oil and gas production and mining activities. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline at 1-800-426-4791.

Health Effects Language

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause "blue baby syndrome". Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider.

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Flagstaff is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at www.epa.gov/safewater/lead.

There were no violations of the Safe Drinking Water Act (SDWA) in 2013. The Arizona Department of Environmental Quality and the Flagstaff Municipal Water System work together to ensure that your drinking water meets all the monitoring requirements mandated by the SDWA. The Flagstaff Municipal Water System conducted over 1,226 water quality sampling events in 2013.

Definitions

MCL = Maximum Contaminant Level. The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG = Maximum Contaminant Level Goal. The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL = Maximum Residual Disinfectant Level. The highest level of a disinfection allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants.

MRDLG = Maximum Residual Disinfectant Level Goal. The level of a drinking water disinfectant below which there is no known or expected health risk. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA = Not Applicable, sampling was not completed by regulation or was not required.

ND = Non detectable level

NTU = Nephelometric Turbidity Units. A measure of water clarity.

pCi/L = Picocuries per liter. Picocuries per liter is a measure of the radioactivity in water.

ppb = Parts per billion. One part per billion is one microgram per liter or one milliliter per cubic meter.

ppm = Parts per million. One part per million is one milligram per liter or one liter per cubic meter.

ppt = Parts per trillion. One part per trillion is one microgram per cubic meter.

ppq = Parts per quadrillion. One part per quadrillion is one picogram per cubic meter.

CITY OF FLAGSTAFF CONSUMER CONFIDENCE REPORT

Public Water System (PWS) Information

PWS Name: City of Flagstaff Municipal Water System / PWS ID# AZ 0403-008
Owner / Operator Name: Brad Hill, Utilities Director
Telephone # (928) 213-2420 Fax # (928) 213-2409 E-mail water@flagstaffaz.gov

The City of Flagstaff's water supply is from surface water (i.e., from Upper Lake Mary and the Inner Basin) and groundwater (i.e., from Woody Mountain, Lake Mary and the Local well fields). Groundwater wells tap the Coconino Aquifer.

We want our valued customers to be informed about their water quality. If you would like to learn more about public participation or to attend any of our regularly scheduled meetings, please contact the Utilities Department at (928) 213-2400. Flagstaff Water Commission meetings are held the third Thursday of each month. Meeting locations are posted on the official City bulletin board at City Hall, 211 W. Aspen Ave., Flagstaff, and on the City’s webpage at www.flagstaffaz.gov/utilities.

Drinking Water Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The presence of contaminants does not necessarily indicate that water poses a health risk. Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants can be naturally occurring or be the result of oil and gas production and mining activities. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline at 1-800-426-4791.

Vulnerable Population

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

Source Water Assessment

Based on the information currently available on the hydrogeologic settings and the adjacent land uses that are in the specified proximity of the drinking water sources of this public water system, the Arizona Department of Environmental Quality (ADEQ) has given a low risk designation for the degree to which this public water system drinking water sources are protected. A low risk designation indicates that most source water protection measures are either already implemented or the hydrogeology is such that the source water protection measures will have little impact on protection.

Health Effects Language

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause "blue baby syndrome". Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider.

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Flagstaff is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at www.epa.gov/safewater/lead.

There were no violations of the Safe Drinking Water Act (SDWA) in 2013. The Arizona Department of Environmental Quality and the Flagstaff Municipal Water System work together to ensure that your drinking water meets all the monitoring requirements mandated by the SDWA. The Flagstaff Municipal Water System conducted over 1,226 water quality sampling events in 2013.
Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBP)

Stage 2 D/DBP Rule required some systems to complete an Initial Distribution System Evaluation (IDSE) to characterize D/DBPs in their distribution systems and identify locations to monitor D/DBPs for Stage 2 D/DBP Rule compliance. The following table summarizes the individual sample results for the IDSE standard monitoring performed in 2013.

Microbiological Contaminants

<table>
<thead>
<tr>
<th>Microbiological</th>
<th>Violation Y or N</th>
<th>Number of Present Results</th>
<th>Number of Absent Results</th>
<th>MCL</th>
<th>MCLG</th>
<th>Samples Per Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria. >70 samples/month taken. >5% samples/month positive is MCL</td>
<td>N</td>
<td>0</td>
<td>867</td>
<td>5%</td>
<td>0</td>
<td>867/year</td>
<td>Naturally present in environment</td>
</tr>
<tr>
<td>Fecal Coliform and E. Coli (TC Rule)</td>
<td>N</td>
<td>0</td>
<td>867</td>
<td>0</td>
<td>0</td>
<td>867/year</td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>

Inorganic Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Violation Y or N</th>
<th>Detected</th>
<th>Range</th>
<th>Low Range of All Samples (Low to High)</th>
<th>AL</th>
<th>ALG</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (ppm)</td>
<td>N</td>
<td>Yes</td>
<td><0.10</td>
<td>0.02 to 0.55</td>
<td>NA</td>
<td>ALG</td>
<td>2011</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>N</td>
<td>Yes</td>
<td><0.10</td>
<td>0.05 to 5</td>
<td>5</td>
<td>0</td>
<td>2012</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>N</td>
<td>Yes</td>
<td><0.09</td>
<td>0.21 to 2</td>
<td>2</td>
<td>2</td>
<td>2013</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>N</td>
<td>Yes</td>
<td><0.10</td>
<td>0.24 to 3</td>
<td>10</td>
<td>0</td>
<td>2013</td>
<td>Erosion of natural deposits; runoff from orchards, runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>Sulfate (ppb)</td>
<td>N</td>
<td>Yes</td>
<td><0.10</td>
<td>0.21 to 2</td>
<td>2</td>
<td>2</td>
<td>2013</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>N</td>
<td>Yes</td>
<td><0.11</td>
<td>1.5 to 10</td>
<td>10</td>
<td>10</td>
<td>2013</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>N</td>
<td>Yes</td>
<td><2.7</td>
<td>4 to 45</td>
<td>250</td>
<td>250</td>
<td>2013</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>pH</td>
<td>N</td>
<td>Yes</td>
<td><7.3</td>
<td>7.90 to 7.90</td>
<td>NA</td>
<td>NA</td>
<td>2013</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Disinfectants

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Violation Y or N</th>
<th>Detected</th>
<th>Range</th>
<th>Low Range of All Samples (Low to High)</th>
<th>AL</th>
<th>ALG</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (as Cl2) (ppm)</td>
<td>N</td>
<td>Yes</td>
<td>0.11 to 1.10</td>
<td>4</td>
<td>4</td>
<td>867/year</td>
<td>As needed per SDWA regulation</td>
<td></td>
</tr>
<tr>
<td>Chlorine dioxide (ppb)</td>
<td>N</td>
<td>Yes</td>
<td>ND to 414</td>
<td>800</td>
<td>800</td>
<td>Water additive used to control microbes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Violation Y or N</th>
<th>Detected</th>
<th>Range</th>
<th>Low Range of All Samples (Low to High)</th>
<th>AL</th>
<th>ALG</th>
<th>Sample Year</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Radium 226 & 228 (pCi/L)</td>
<td>N</td>
<td>Yes</td>
<td>ND (<0.3)</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>2012</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium (ppb)</td>
<td>N</td>
<td>Yes</td>
<td>1.5</td>
<td>2.8 to 30</td>
<td>30</td>
<td>0</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Alpha emitters (pCi/L)</td>
<td>N</td>
<td>Yes</td>
<td>1.7</td>
<td>5.6 to 15</td>
<td>15</td>
<td>0</td>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

Total Dissolved Solids

A measure of the combined content of all inorganic and organic substances contained in a liquid in molecular, ionized or suspended form. The most common chemical constituents are calcium, phosphates, nitrates, sodium, potassium, and chloride, which are found in nutrient runoff from general stormwater runoff.

pH

A measure of the ratio of hydrogen ions in solution. Water with a pH of 7 is neutral; below 7 is acidic; above 7 is alkaline.

Total Coliform Bacteria

Bacteria that are found naturally in soil and water, and are a common indicator of the presence of other disease-causing organisms. A positive result indicates the presence of faecal matter in the water supply.

Total Coliform and E. Coli

Bacteria that are found naturally in soil and water, and are a common indicator of the presence of other disease-causing organisms. A positive result indicates the presence of faecal matter in the water supply.

Chlorine (as Cl2) (ppm)

A disinfectant used in drinking water treatment to kill bacteria and control growth of aquatic organisms. The MCL is 4 mg/L.

Chlorine dioxide (ppb)

A disinfectant used in drinking water treatment to kill bacteria and control growth of aquatic organisms. The MCL is 2 mg/L.

Turbidity (NTU)

A measure of the amount of light scattered by water. A value of 0.10 NTU is considered to be clear and free from suspended matter.

MCL

Maximum Contaminant Level: The highest level of a contaminant allowed in drinking water. The MCL is the legal limit for the contaminant in drinking water.

MCLG

Maximum Contaminant Level Goal: The level of a contaminant to which human beings can be exposed over a lifetime without adversely affecting their health.

MRDL

Maximum Residual Disinfectant Level: The level of a disinfectant residual allowed in drinking water.

MRDLG

Maximum Residual Disinfectant Level Goal: The level of a disinfectant residual to which human beings can be exposed over a lifetime without adversely affecting their health.

Treatment Technique

A required process intended to reduce the level of a contaminant in drinking water.

Toxic Substances Control Act (TSCA)

A United States federal law that requires notifying the government if a material contains a known hazardous substance.

TDS

Total Dissolved Solids: A measure of the combined content of all inorganic and organic substances contained in a liquid in molecular, ionized or suspended form. The most common chemical constituents are calcium, phosphates, nitrates, sodium, potassium, and chloride, which are found in nutrient runoff from general stormwater runoff.

µS/cm

microsiemens per centimeter. One unit of measurement for TDS is microsiemens per centimeter (µS/cm).

TT

Total Trihalomethanes: A disinfection byproduct of drinking water disinfection.